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Lecturer at HCMUS

¢2010-2017:Software Engineer Department
*2015: Visiting Researcher at National Institute of Informatics, Tokyo, Japan (NII)

Lecturer at UIT

* 2017 — present: Faculty of Computer Science
¢2011-2014:Business Analyst, Barclays, Singapore

Academic Head at VietAl

¢ 2018— present: Foundation of ML and Advanced Class in Computer Vision

Technical Program Manager at Koidra

*2018— present: ML development and deployment




Visual Search System

* Rank #1 at TRECVID Instance Searchin 2014, #2 in 2015 and 2016 (organized by NIST)
e Rank #1 at TRECVID AdhocVideo Search in 2016 (organized by NIST)

Applied ML

e Churn Prediction: Predicting customers who are going to unsubscribe the company’s
services in the next month

e Price Prediction:Predictingoptimal price distributionforhouse leasing everyday
e Visual Tagging: Addinglabels to describe the image
e OCRin the wild: Detecting and Recognizingtextin a scene image




From Theory




Why we must have backgrounde




input

black box

machine learning model

output

#1. Without background,
ML like a black box




Seheel #2. Which background
fP e should we have?

Linear Algebra:
- Matrix and vector

Probability:

Very fundamental knowledge

Calculus:

Derivative

fx)

f(x:)




#3. How to improve
the background of
VNese ML engineers?

* Foundation ML classes in 3 regions
of Vietnam: Saigon, Hanoi, Hue

* UIT is the first university that
teaches Deep Learning officially

* Research skills are embedded to
the courses

* We connect to world-class experts




#4. With background,
ML like a Lego




To Practice




ML/DL: from theory to practice

10 Lessons

These slides are credited from Kenneth Tran, MSR
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#1. Metrics

Data and Models are great. You know
what’s even better?

The right evaluation approach.
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Case: Fraud Detection

So what metrics should we use?
* Accuracy




Metrics

So what metrics should we use?

* Accuracy
* ROCAUC

True Positive Rate

o
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Receiver operating characteristic example
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Metrics

So what metrics should we use?

[ J Accu ra Cy Relceiver operalt'tng charactleristic example . Precisioln—Recall: AUC=0.57
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Metrics

So what metrics should we use?

* Accuracy
ROC AUC
PR AUC

How about simple economics

L — NFPXCFP + NFNXCFN




#2. Uncertainty:
your model
should be able
to tell what it
doesn’'t know




| am not really confident, but | think it's a close up of a stage.
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Other use cases

* Demand forecasting
* Autonomous or semi-autonomous driving
* Health care

* Any application in which a misclassification (or misprediction) is costly
or when the prediction is an input to a decision making process




#3. Understand the
INntfer-dependency
between models
and features

The fact that a more complex model does
notimprove things does not mean you
don’tneed one




Better models and features that
don’'t work

Imagine the following scenario

* You have a Random Forest model and for some time you have been
selecting and optimizing features for that model

* If you try a Neural Nets model with the same features you are not
likely to see any improvement

* If you try to add more expressive features (e.g. text embedding), the
existing random forest model is likely not to capture them and you
are not likely to see any improvement
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It’s Important to understand the
interplay between features and
The fact that a complex model doesn’t work well doesn’t imply that you should discard it.

models.

s




A counter scenario

* A company/team is tasked to solve a ML problem

* They spend lots of effort on a DL model and very little effort on the
other approaches

* They later claim having improved the results using DL

* Slight improvement using DL used to generate more PR (and hence
promotion/investments) than more substantial improvements with
non-DL methods




A counter scenario

* Slight improvement using DL used to generate more PR (and hence
promotion/investments) than more substantial improvements with
non-DL methods

* This was fairly common in “Silicon Valley”

Gigaom | How PayPal uses deep learning and detective work to
fight fraud

uil War 5 8 na niine fraud change a lot In the 11 years she's been at
PayPal. In fact, a continuous




#4: model
performance is a
monotone function
of engineering effort

Better results don’t always imply smarter
model. Be aware of hype vs. substance.




#5. You
mMay Not

need all
your Big
Data

“Big data is like teenage sex; everyone
talks about it, nobody really knows
how to do it, everyone thinks
everyone else is doing it, so everyone
claims they are doing it.”

- Dan Ariely, Duke University (2013)




Slide Credit: Xavier Amatriain

How useful is Big Data

NETFLIX

“‘Everybody” has Big Data
m But not everybody needs it

m E.g. Do you need many millions of users if the goal is to
compute a MF of, say, 100 factors?

Many times, doing some kind of smart (e.g. stratified)

sampling can produce as good or even better results as
using it all © S SIS/




Distributed ML is another “dangerous”
trend, similar to “Big Data”




s Direct Feedback Loops

A model may directly
#/ Be influence the selection of its
. own future training data.

aware of e Learn contextual bandits

feedback
loops

e Example: 2 stock-market
prediction model




8. Use Transfer Learning

Transfer Learning has been a key driver of ML success in industry




Transfer
Learning
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What is Transfer Learning?

Traditional ML

Task / domain A
/ Task / domain B

Training and
evaluation on the same
task or domain.

Model A Model B

2 i 01.03.17 | LinkedIn Tech Talk @seb_ruder | =



What is Transfer Learning?

Transfer learning

Source task /
domain Target task /
domain

Storing knowledge gained solving
one problem and applying it to a
different but related problem.

Transfer
Learning

Model

Model

L L R

Knowledge

.03.17 | LinkedIn Tech Talk @seb_ruder |




Why Transfer Learning now?

Drivers of ML success in industry

Supervised learning

.~ Transfer learning
Commercial :
success

Unsupervised learning
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Slide Credit: Sebastian Ruder - Andrew Ng, NIPS 2016 keynote




#9. Transfer Learning from Software
Engineering

* Model versioning
* Experiment review

* Hierarchical and compositional mindset
* DL was inspired by this!




#10. Al—=The revolution hasn't
happened yet
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#10. Al—=The revolution hasn't
happened yet

 Start simple and take incremental steps
* Make sure you understand what you are learning/doingat each step

« Start with real problems, then identify the technologies
* Common mistakes: start with (hyped) technologies, then find applications
* Examples: chat bots, personal assistants, etc.

* There are many simple, unsexy, but high-value ML problems




Thank you for your attention!






